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Abstract—Foundational deep learning (DL) models are general
models, trained on large, diverse, and unlabelled datasets, typically
using self-supervised learning techniques - and have led to sig-
nificant advancements especially in natural language processing.
These pretrained models can be fine-tuned for related downstream
tasks, offering faster development and reduced training costs,
while often achieving improved performance. In this work, we
introduce Masked Spectrogram Modeling, a novel self-supervised
learning approach for pretraining foundational DL models on
radio signals. Adopting a Convolutional LSTM architecture for
efficient spatio-temporal processing, we pretrain the model with
an unlabelled radio dataset collected from over-the-air mea-
surements. Subsequently, the pretrained model is fine-tuned for
two downstream tasks: spectrum forecasting and segmentation.
Experimental results demonstrate that our methodology achieves
competitive performance in both forecasting accuracy and seg-
mentation, validating its effectiveness for developing foundational
radio models.

Index Terms—Self-Supervised Learning, Deep Learning, Foun-
dational Models, Spectrum Forecasting, Spectrum Segmentation

I. INTRODUCTION

A foundational model is a general model pretrained on a
large-scale - usually unlabeled - dataset, typically through self-
supervised learning [1]. Through this training, the model devel-
ops a solid understanding of the target modality, such as text
in natural language processing (NLP) or images in computer
vision. This understanding allows the model to be fine-tuned for
diverse downstream tasks. Foundational models in NLP [2], [3]
and computer vision [4] have driven significant advancements
through leveraging the knowledge encoded in their pretrained
representations. This facilitates quicker experimentation, more
efficient resource utilization, and potentially, improved perfor-
mance on downstream tasks that smaller models or those with
more limited domain knowledge cannot achieve.

Deep learning has showcased promising results when applied
in wireless communication [5]. The effectiveness has been
demonstrated across various tasks, including automatic modula-
tion classification [6], channel estimation [7], constellation and
waveform design [8], among others. However, these models are
highly specialized, echoing the early stages of deep learning’s
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evolution in NLP and computer vision. The reliability of
these models across data distribution shifts and their ability
to generalize is also usually limited.

Introducing the concept of foundational models into wireless
communication holds substantial promise to overcome these
limitations [9]. We argue that as in NLP and computer vision,
where a wealth of unlabeled data exists — communication
signals can be harnessed for pretraining such foundational
models through self-supervised learning, mitigating the ex-
pense associated with data labeling. Moreover, leveraging a
foundational model as a backbone for multiple downstream
tasks, which utilize its pretrained representations in subsequent
processing, reduces computational demands. This approach
can also improve generalization by leveraging the broader
knowledge encoded within foundational model representations
compared to highly specialized models which suffer from
limited scope.

Drawing inspiration from these advancements, particularly
in [2], [4], [10], we introduce a foundational radio model
pretrained using masked spectrogram modelling (MSM) — a
novel technique, we propose for wireless signals. This model
is then fine-tuned to perform two different downstream tasks:
spectrogram forecasting, which involves predicting future spec-
trogram based on past data, and spectrogram segmentation,
which consists of distinguishing between background noise
and other signal activities within the spectrogram. These tasks,
while different, are complementary in the context of spectrum
analysis and constitute a usage scenario for a foundational
model integrated in a opportunistic spectrum access system.
The primary contributions of our paper are:
• We propose and develop a novel self-supervised learning

approach, MSM, for pre-training foundational models on
radio signals. To the best of our knowledge, this work
represents the first demonstration of radio foundational
models for spectrogram learning using unlabeled data.

• We demonstrate the effectiveness of the proposed approach
utilizing a real-world dataset that we collected over a
software-defined radio testbed. The recordings are time-
domain IQ samples received between 2.4 to 2.65 GHz.

• Our results show that the developed MSM approach is
able to learn features that generalize to both related and
unrelated downstream tasks. Fine-tuning the foundational
model demonstrated competitive results for spectrum fore-



casting and spectrum segmentation which had a distinctly
different and unseen data distribution.

The results of this paper highlight the significant potential
that radio foundational models have to effectively enable mul-
tiple downstream spectrogram tasks. It is envisioned that such
models will foster wider adoption of AI to enable reliable
network performance and services.

The remainder of the paper is structured as follows: Section
II presents the two datasets utilized for pretraining the founda-
tional model, and for the spectrum forecasting and segmentation
tasks. Section III outlines the architecture and algorithm of
the self-supervised foundational model. Section IV presents
numerical experiments conducted to evaluate the proposed
methodology. Finally, Section V concludes the paper.

II. TESTBED AND DATASETS

We leverage two datasets in this paper. The first is a
Real-time Radio Dataset (RRD), captured in real-time using
a software-defined radio (SDR) test-bed developed with Plu-
toSDRs. The second dataset simulates 5G New Radio (NR)
and LTE transmissions in neighboring bands. This is called
the Segmentation Dataset (SD). In both datasets, our primary
emphasis is on processing spectrogram data rather than IQ
samples, thus a significant portion of preprocessing and data
preparation revolves around spectrogram computation.

A. Real-time Radio Dataset (RRD)

The RRD dataset consists of time-domain recordings of IQ
samples, which represent both the in-phase (I) and quadrature
(Q) components of the RF signal. Each recording corresponds
to a distinct center frequency, sampling frequency, and running
for a specific duration. The center frequency spans from 2.4
to 2.65 GHz, with the sampling frequency varying between 10
MHz and 60 MHz. The time duration typically averages around
100 ms. The data was collected in downtown Toronto, Canada.
We utilize the dataset for foundational model pretraining and
spectrum forecasting. There are 240 recordings in total corre-
sponding to approximately 24 seconds of RF activity.
Spectrogram Computation. The spectrogram of each IQ
recording is then computed as follows.

1) Divide the recording into non-overlapping 2 ms slices.
2) Compute the spectrogram for each 2 ms slice.
3) Convert each spectrogram from the linear to the log scale.
The parameters used to generate the RRD dataset are sum-

marized in Table I.

B. NR-LTE Segmentation Dataset (SD)

The process of creating the SD dataset begins with the
generation of 5G NR and LTE signals individually. Subse-
quently, these signals are transmitted through their respective
wireless channels in adjacent bands. We employ the Matlab
Communication Toolbox for signal generation, following the
guidelines outlined in [11]. The parameters for generating
5G NR and LTE signals are presented in Tables II and III
respectively.

TABLE I: RRD Dataset Generation Parameters

Parameters Value

Spectrogram

Parameters

FFT Size 1024

Window Function Hanning

Window Size 512

Hop Size 512

Slicing

Parameters

Sentence Duration 10, 20 ms

Sentence Shape (256, 256)
Token Shape (256, 16)

TABLE II: 5G NR Signal Generation Parameters.

Parameter Value

Bandwidth 10, 15, · · · , 50 MHz

Sub-Carrier Spacing (SCS) 15, 30 KHz

Synch. Signal Block (SSB) Pattern Cases A and B

Synch. Signal Block (SSB) Period 20 ms

TABLE III: LTE Signal Generation Parameters.

Parameter Value

Bandwidth 5, 10, 15, 20 MHz

Reference Channel R. {2, 4, 6, 8}

Duplex Mode FDD

In more detail, the dataset creation process involves two main
steps: signal generation and spectrogram computation.
Signal Generation

1) Randomly select a signal configuration from Table II for
5G NR and Table III for LTE. Generate 40 subframes of
signal transmission, corresponding to 40 ms.

2) Apply the respective signal through its corresponding
multipath fading channel. For 5G NR, the NR clustered
delay line channel is utilized, while for LTE, the LTE
fading channel is employed.

3) Perform frequency up-conversion on both signals to po-
sition them in neighboring bands, then mix the signals
in time. Operate at a center frequency of 4 GHz with
a sampling rate of 61.44 MHz. Randomly place the
signals within the band-of-interest, ensuring no frequency
overlap.

Spectrogram Computation
1) Compute the spectrogram for the resulting signal mixture.
2) Resize the spectrogram to the shape (256, 256).
3) Create a label image of shape (256, 256), assigning a

value of 1 to pixels with NR signals, 2 to pixels with
LTE signals, and 0 to pixels with noise.

4) Store the spectrogram and label image pair.
A sample spectrogram of this dataset is shown in Figure 1.

It is worth noting that the range of noise power is handled
differently between the training and test sets. For the training



Fig. 1: A spectrogram and label pair for the segmentation task.

set, we utilize a normal distribution N(−70, 5) dBm, while for
the test set, we employ a uniform distribution U(−90,−20)
dBm. The reasoning behind this approach is as follows: in
the training phase, we aim to prevent instances with high
noise power from dominating the loss function, which could
skew the training process. To achieve this, we undersample
high noise instances by using a normal distribution. However,
during testing, we want the model to be evaluated across all
noise power levels equally. Therefore, we opt for a uniform
distribution to ensure fair testing conditions.

III. FOUNDATIONAL MODEL FOR SPECTROGRAM
LEARNING

In this section we first present the methodology we propose
to create the equivalent of sentences and tokens in the context
of spectrograms. These radio sentences are then utilized by
the proposed self-supervised masked spectrogram modelling
approach which we present next. Here we utilize a convo-
lutional LSTM (ConvLSTM) model introduced in [12]. This
model is specifically crafted to capture crucial spatio-temporal
features, aligning with our spectrogram learning needs. The
convolutional component focuses on spatial properties, while
the LSTM configuration handles temporal aspects. It accepts
a sequence of two-dimensional spectrogram tokens as input
and produces an output sequence of equal length. The details
of the two downstream tasks that leverage this foundational
ConvLSTM are then presented.

A. Creation of Radio Sentences and Tokens

(a) Randomly sample a sequence of successive spectrograms
with a duration ranging from 10 to 20 ms.

(b) Concatenate the sequence of spectrograms along the time-
axis.

(c) Resize the result to a shape of (256, 256).
(d) Divide the result along the time-axis into a sequence of

tokens with a shape of (256, 16), allowing the sequence
of tokens to be represented as a 3D array with a shape
of (16, 256, 16).

(e) Append the resulting sentence—a sequence of tokens—to
the corpus, which will contain sentences of variable size.

Fig. 2: A radio sentence created from the RRD dataset.

A sample sentence is illustrated in Figure 2, where the token
is also labelled. Next we discuss our proposed approach to use
these radio sentences and tokens to pretrain and develop a radio
foundation model.

B. Masked Spectrogram Modelling

We propose a technique, we refer to as masked spectrogram
modeling (MSM) for pretraining the foundational model. This
approach involves inputting a spectrogram into a deep learning
model and masking a portion of it—typically 20%. Masking
involves replacing the actual content of the spectrogram with
white noise as shown in Figure 4. The model’s objective
is to reconstruct the original spectrogram from the masked
version, effectively denoising it in the process. To achieve this,
the model analyzes the surrounding context and infers what
was likely in the masked positions. Throughout the learning
process, the model is expected to develop an understanding
of radio signals as represented by spectrograms, creating an
internal representation that enables it to accurately recover the
original spectrograms. A notable advantage of this approach
is that it operates without the need for labels. Radio signals
can be recorded and fed directly into the model pipeline,
which then leverages them to refine its internal representation.
The pretrained model can then be fine-tuned for any related
downstream task, the procedure is illustrated in Figure 3 and a
general algorithm is described in Algorithm 1.

TABLE IV: ConvLSTM Hyperparameters

Parameter Value

Layers 5 ConvLSTM + 1 Conv3D

Number of kernels per layer 64

Kernel size 3

Activation function ReLU

A ConvLSTM model is used for pretraining, utilizing the
hyperparameters listed in Table IV. The mean-square error is



Fig. 3: Illustration of the proposed methodology for MSM pretraining and downstream task fine-tuning.

Fig. 4: Masked and original spectrogram pair.

used as the loss function, computed only for the masked tokens.
The loss function LMSM of MSM task can be written as:

LMSM =

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

vec
(
W(𝑛)

𝑡

)
− vec

(
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2
Imasked (𝑛, 𝑡) (1)

where 𝑁 is the batch size, W(𝑖)
𝑡 ∈ R256×16 is the 𝑡th input token

from sample 𝑛, Ŵ(𝑖)
𝑡 ∈ R256×16 is the 𝑡th predicted token for

sample 𝑛, 𝑇 is the number of input tokens, vec denotes the
vectorization operation, ∥ · ∥2 is the 𝐿2 norm and Imasked (𝑖, 𝑡)
is an indicator function that outputs 1 if token 𝑡 from sample
𝑛 was masked and 0 otherwise. The resulting self-supervised
pre-trained model serves as our radio foundational model and
is used for the following two downstream radio tasks.

C. Spectrum Forecasting

In this task, the model takes a sequence of tokens{
W(𝑛)

1 , · · · ,W(𝑛)
𝑇

}
as input and aims to predict the next token

Ŵ(𝑛)
𝑇+1. Training involves minimizing the mean-square-error loss

between the predicted token and the actual next token for a

batch of inputs
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)
, where 𝑛

is the sample index and 𝑁 represents the batch size. This loss
function, denoted as LSF, is formulated as follows:

LSF =
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The model architecture described in Table IV is used, yet with
two notable modifications: first, only the initial token of the
output Conv3D layer is considered, disregarding the remaining
outputs. Second, the backbone of the model, consisting of the 5
ConvLSTM layers, is frozen, and its weights are initialized with
those obtained from the MSM task. Consequently, the features
learned during the MSM task are utilized, while only the final
layer undergoes fine-tuning for spectrum forecasting purposes.

D. Spectrogram Segmentation

In this task, the model processes a spectrogram of size
(256, 256), which is then tokenized into 16 tokens of shape
(256, 16). Consequently, the input comprises a sequence of
tokens

{
W(𝑛)

1 , · · · ,W(𝑛)
16

}
while the output is a segmented

image Y(𝑛) ∈ {0, 1} (256, 256, 3) that is one-hot encoded and
the model prediction is denoted as Ŷ(𝑛) ∈ [0, 1] (256, 256, 3) .
For a batch of size 𝑁 , we utilize the cross entropy loss written
as:

LSG = −
∑︁
𝑖

∑︁
𝑗

𝑁∑︁
𝑛=1

Y(𝑛)
𝑖 𝑗
· log

(
Ŷ(𝑛)
𝑖 𝑗

)
(3)

Similar to spectrum forecasting, the backbone consists of 5
ConvLSTM layers. Subsequently, the backbone’s output is
concatenated to form a shape of (256, 256), serving as input to



Algorithm 1: Self-Supervised Pre-training and Down-
stream Fine-Tuning Framework

Pretraining subalgorithm
Input : initial model, IQ recordings
Output: pretrained model
pretrained model ← initial model
Convert IQ recordings to radio sentence representation
using the procedure described in Section II

for sentence in all radio sentences do
masked sentence ← RANDOM MASK(sentence)
predicted sentence ←
pretrained model·FORWARD(masked sentence)

loss ← MSEMSM(masked sentence, sentence) using
eq. (1)

pretrained model ← UPDATE(pretrained model,
loss)

end
end subalgorithm

Fine-tuning subalgorithm
Input : pretrained model, downstream dataset
Output: finetuned model
finetuned model ← pretrained model
preprocessed dataset ←

PREPROCESS(downstream dataset) using the same
transformations utilized for the pretrained model

for every (input, target) in preprocessed dataset do
prediction ← finetuned model·FORWARD(input)
loss ← LOSS FN(prediction, target)
finetuned model ← UPDATE(pretrained model,
loss)

end
end subalgorithm

a two-layer Conv2D classifier. The backbone’s weights remain
fixed, the classifier is fine-tuned for the segmentation task.

IV. RESULTS AND DISCUSSION

This section evaluates the proposed self-supervised radio pre-
training methodology by comparing the performance of the re-
sulting foundational model when fine-tuned on two downstream
tasks—spectrum forecasting and segmentation—to a baseline.
The baseline model shares the same architecture but is trained
from scratch on identical data.

A. Downstream Task-1: Spectrum Forecasting

Data and Model Training: We partition the RRD dataset,
allocating 50% for pretraining and reserving the remaining 50%
for forecasting.

We fine-tune the pretrained model using the remaining 50%
of the RDD dataset, which we further split into training and
test sets with an 80% to 20% ratio.

Evaluation Metric: To evaluate the model’s forecasting per-
formance, relying solely on visual comparison between the

Fig. 5: Illustration of a spectrogram and its corresponding
resource grid for a block size of (1 ms, 5 MHz).

Fig. 6: Probability of correct occupied predictions. The solid
lines are the foundational tuned model and (b) is the baseline.

target and predicted spectrograms will not suffice. Therefore,
we adopt a more robust metric by transforming each spec-
trogram into a resource grid composed of resource blocks
(RBs) with predefined time and frequency resolutions. This
process involves dividing the spectrogram into these blocks and
computing the mean value for each. Subsequently, a threshold
is applied to the resulting grid, rendering it binary—where a
value of 1 denotes an occupied block and 0 denotes a vacant
one. Figure 5 depicts the outcome of this transformation. The
threshold 𝛿 is empirically determined as:

𝛿 = 𝜇 + 0.5 × 𝜎 (4)

where 𝜇 and 𝜎 represent the mean and standard deviation of
the spectrogram, respectively.

Our primary evaluation metric focuses on the model’s capac-
ity to correctly predict the occupancy of a resource block when
it is indeed occupied. Predicting vacancy is straightforward,
given its prevalence as the dominant class. From the perspective
of opportunistic spectrum access, it is crucial to consistently
detect occupied blocks to mitigate potential collisions.

This metric is depicted in Figure 6 for predictions extending
4 tokens into the future, across various time and frequency
resolutions for the resource block, with (b) representing the
baseline. The specialized baseline outperforms the tuned foun-
dational model, though by a small margin.



Tuned Foundational Model Baseline Model

Fig. 7: Segmentation performance using confusion matrices.

B. Downstream Task-2: NR-LTE Segmentation

For the segmentation task, we utilize the SD dataset to
fine-tune the foundational model. The main challenge here
lies in the distinct nature of the spectrograms within this
dataset compared to those used during the self-supervised pre-
training. Consequently, the learned features may not generalize
as effectively to segmentation as they do to forecasting. In
addition, segmentation is a classification task and the model was
pre-trained on regression only. Our objective is to examine the
extent to which the learned representations of the foundational
model can generalize under such distinct data distributions and
across task types.

We evaluate the model’s performance using confusion ma-
trices for the three classes: Noise, NR, and LTE, which quan-
tify the model’s prediction accuracy for each class. Figure 7
presents the confusion matrices for both the baseline and fine-
tuned models. Notably, the fine-tuned model struggles with
distinguishing NR signals, while the baseline model demon-
strates strong performance across all classes. This suggests
that the features provided by the pretrained backbone are not
sufficiently discriminative to differentiate NR signals from other
classes, though they perform adequately in separating signals
(NR or LTE) from noise. A more complex head and fine-tuning
training process may also be needed.

To further illustrate this, we simplify the task to binary
segmentation, merging NR and LTE into a single signal class.
The resulting confusion matrices are shown in Figure 8. Here,
while the baseline model still outperforms the fine-tuned model,
the correct detection of signals is higher. We attribute this to
differences in data distribution between the pretraining and SD
datasets. Pretraining on a larger and more diverse dataset may
help bridge this gap. Further research by the community will
be needed in these directions to build large-scale foundational
radio models.

V. CONCLUSION

In this paper, we introduced a self-supervised radio pre-
training approach, MSM, to build a foundational model for
spectrogram learning. Drawing inspiration from the success of
foundational DL models in various domains, the goal was to
learn features that could generalize to related downstream tasks.
We demonstrated that by fine-tuning the developed MSM model

Tuned Foundational Model Baseline Model

Fig. 8: Binary segmentation performance using confusion ma-
trices.

for two downstream tasks: spectrum forecasting and segmen-
tation. Our results show that the fine-tuned models exhibited
competitive performance compared to baselines trained from
scratch, while requiring much less training time to converge. We
believe that extending the proposed MSM approach to larger
models and utilizing large-scale, diverse datasets for pretraining
has the potential to develop robust radio foundational models
that yield competitive performance across various spectrogram
learning tasks.
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