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Abstract—Deep learning (DL) techniques have recently
emerged to efficiently manage mmWave beam transmissions
without requiring time consuming beam sweeping strategies. A
fundamental challenge in these methods is their dependency
on hardware-specific training data and their limited ability
to generalize. Large drops in performance are reported in
literature when DL models trained in one antenna environment
are applied in another. This paper proposes the application of
Prototypical Networks to address this challenge — and utilizes
the DeepBeam real-world dataset [1] to validate the developed
solutions. Prototypical Networks (PN) excel in extracting fea-
tures to establish class-specific prototypes during the training,
resulting in precise embeddings that encapsulate the defining
features of the data. We demonstrate the effectiveness of PN
to enable generalization of deep beam predictors across unseen
antennas. Our approach, which integrates data normalization
and prototype normalization with the PN, achieves an average
beam classification accuracy of 74.11% when trained and tested
on different antenna datasets. This is an improvement of 398 %
compared to baseline performances reported in literature that
do not account for such domain shifts. To the best of our
knowledge, this work represents the first demonstration of the
value of Prototypical Networks for domain adaptation in wireless
networks, providing a foundation for future research in this area.

Beam Management, Domain Adaptation, Prototypical net-

work, angle-of-arrival, mm-wave.

I. INTRODUCTION

In the realm of wireless communication, machine learning
models are traditionally developed with the expectation that
the training and testing distributions are identical. However,
this simplification often proves inadequate in practical sce-
narios, leading to significant performance degradation due
to distribution shifts in new, unseen environments. These
shifts primarily arise because of inherent hardware differences,
antenna properties, and propagation environments utilized
during training fail to represent those encountered in actual
deployment. This discrepancy is particularly pronounced in
mmWave beam management applications, where precise beam
alignment is crucial for system performance, highlighting a
gap between theoretical assumptions and operational realities.

To fully exploit the bandwidth potential of mmWave tech-
nologies for next-generation wireless networks, efficient beam
management is essential for robust connectivity and signal

The authors would like to thank Qoherent Inc. and MITACS Accelerate
for their support of this research. The authors would also like to thank Denvr
Dataworks, Calgary, Canada for their high-performance compute.

Embeddings Space 1
Calculated

Prototypes

Support Set

Calculating
prototypes

(averaging the extracted
features)

= Encoder ‘

Embeddings Spac

Query Set

Class probabilities

Encoder ! .
< & loss calculation

N & CalculatedP = Forward pass
< alculated Prototypes
v yp €= Backward pass (Updating encoder parameters)

Fig. 1: Prototypical Network Architecture and Training [4].

transmission. Deep learning (DL) has emerged as a power-
ful tool for refining beam management strategies, enabling
dynamic beam prediction and alignment [1]]-[3]. DeepBeam
[1] leverages deep learning to optimize beam selection using
I/Q data. This framework is designed to infer the Angle
of Arrival (AoA) and identify the beam used by the trans-
mitter through passive reception of ongoing transmissions.
It offers operational flexibility, functioning with both single
and multiple RF chains. This capability allows DeepBeam
to bypass traditional beam sweeping, thereby streamlining
the beam management process. Despite these capabilities,
DeepBeam encounters challenges with classification accuracy
when models trained in one antenna environment are applied in
another. This underscores the importance of domain adaptation
techniques to preserve the efficacy of DL models amidst
mmWave system and hardware variability.

Several advances toward such domain generalization are
actively being researched by the DL community. This includes
utilizing strategies such as Prototypical Networks (PN) [4] and
meta-learning techniques like Model-Agnostic Meta-Learning
(MAML) [5]. Prototypical Networks are distinguished by
their capacity to adapt to new domains without additional
training. Unlike MAML, which necessitates model fine-tuning,
PNs excel in extracting features to establish class-specific
prototypes during the initial training phase. These prototypes,
the class averages of embedded support examples as depicted
in Figure |1} facilitate new example classification by measuring



distances to the prototypes. This method of feature extraction
and prototype creation allows PNs to navigate domain shifts
effectively. We hypothesize that this makes them well-suited
for tasks like beam classification in mmWave communication
[1]], where generalizing from limited data is vital.

In response to the challenges of domain shifts in mmWave
beam prediction, our paper aims to propose and investigate
the application of Prototypical Networks to address these
limitations. The primary contributions of our paper are:

« We propose and develop ProtoBeam — an approach using
Prototypical Networks (PN) for mmWave beam classi-
fication. ProtoBeam enables DL models to be deployed
on unseen antenna setups without requiring retraining. To
the best of our knowledge, this work represents the first
demonstration of the value of PN for domain adaptation
in wireless networks, providing a foundation for future
research in this area.

o We develop and integrate data augmentation, data nor-
malization, and prototype normalization methods to im-
prove the performance of ProtoBeam. We show that
these techniques improve accuracy by over 20% and are
essential for effective PN design in beam classification.
Our analysis includes examining the effects of various
design choices, specifically focusing on the number of
training shots used in beam classification.

o We utilizes the DeepBeam real-world dataset [1] that
is characterized by diverse antenna configurations to
demonstrate the effectiveness of ProtoBeam. Our ap-
proach achieves an average beam classification accuracy
of 74.11% when trained and tested on different antenna
datasets. This is an improvement of 398% compared to
baseline performances reported in literature.

The results of this paper highlight the significant poten-
tial that Prototypical Networks have to address the domain
shift challenge encountered in real-world Al-powered wireless
communications. All the code to reproduce our results and
conduct further research in this area is available at |https:
//github.com/omarmshaal/ProtoBeam The rest of the paper is
organized as follows: Section II summarises related work.
Section III describes our methodology and the dataset used.
Section IV discusses our results and findings. We conclude the
paper in Section V.

II. RELATED WORK

Meta-learning, as a solution to domain shift challenges,
is increasingly attracting attention in the wireless domain,
with several notable works exploring its application in beam
management. For instance, the work in [|6] introduces a meta-
learning algorithm designed for beam prediction across sub-
6GHz and mmWave bands, leveraging sub-6GHz CSI to
navigate distribution shifts through a bi-level optimization
meta-learner. Additionally, [[7] employs MAML and transfer
learning to adapt to domain shifts in beamforming, demonstrat-
ing that MAML outperforms transfer learning for predicting
the power allocation vector. Furthermore, [8]] employs a few-
shot MAML approach for classifying incident wave angles

using received signal strength (RSS) in air-to-air networks,
adapting to dynamic 3D channel conditions with limited data
availability. The work in [9] aims to streamline the beam
selection process by substituting exhaustive searches with
probing and employs the MAML framework to swiftly adapt
to new settings. Lastly, [10] proposes an adaptive beamforming
method that utilizes support vector regression (SVR) for fast
adaptation. This method involves using a pre-trained deep
neural network as a feature extractor, with only the SVR model
requiring training during the adaptation stage to quickly adjust
to new environments. While previous approaches in beam
management domain adaptation primarily employ MAML for
tasks such as power vector allocation and beam classification,
these methods necessitate model retraining or fine-tuning,
adding extra computational complexity and time. In contrast,
our study utilizes Prototypical Networks for mmWave beam
classification, aiming to handle domain shifts across antennas
without requiring retraining. This approach seeks to avoid
extensive training phases common in methods like MAML,
targeting classification directly. Our beam management ap-
plication focus is also different from prior work. We aim
to identify the beam used by the transmitter through passive
reception of ongoing transmissions, building on the real-world
data measurements for different antennas presented in [1]].

III. PROTOBEAM: GENERALIZABLE DEEP BEAM
PREDICTION FOR MMWAVE

In this section, we first present the domain adaptation
problem encountered when DL beam classification models
are trained and then deployed on different antenna hardware.
We then present our ProtoBeam framework, showcasing how
Prototypical Networks are employed to handle such domain
shifts in mmWave beam management systems.

A. Problem Formulation

DeepBeam |[1]] is the first framework designed for mmWave
networks that utilizes waveform-level deep learning to man-
age beams without requiring explicit coordination between
transmitters (TX) and receivers (RX). This approach allows
DeepBeam to leverage ongoing transmissions to infer the
Ao0A and determine which transmit beam (TXB), from a
certain codebook, is being used by the TX. Once enough
transmissions are eavesdropped, DeepBeam can recommend
the optimal beam for communication by ranking the inferred
TXBs by their associated Reference Signal Received Power
(RSRP), eliminating the need for pilot signals. Additionally,
DeepBeam is directly connected to the device’s RF chain as
shown in Figure allowing it to process I/Q samples at
the physical (PHY) layer without requiring synchronization
between the transmitter and receiver.

Despite the capabilities of DeepBeam, the framework en-
counters challenges with domain shifts, particularly evident
when deploying the 24-beam codebook. For instance, the av-
erage accuracy for Training and Testing On the Same Antenna
(TTSA) stands at 78.51%. However, this accuracy significantly
decreases when the system is subjected to a Training on One
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Antenna and Testing on Another (TOTA) scenario, where the
training data might be collected by one set of RF hardware
(such as TX1 and TXO0), and then tested by another (such
as TX2 and TXO0) as shown in Figure 2(b)] TOTA results
in an accuracy drop to 16.97%. Furthermore, when training
and testing involve a mixed dataset with waveforms from all
antennas, accuracy improves to 49.41%, yet still substantially
lags behind the TTSA scenario. Therefore, the core challenge
is to enhance the model’s generalization capabilities to main-
tain high TTSA accuracy while substantially improving TOTA
accuracy in diverse antenna setups. This will ensure more
reliable beam classification across different mmWave hardware
and system capabilities.

mmwave TX

waveform
mmwave RX

waveform CNN

/WWE—»‘ RX Chain F.T:—’:.;»(\ TEIN \< or
) > IR

Baseband IQ Samples

Classify

(@)

Best performance Degraded performance

X1 TX2

RX0 | N RX0 | N
Wﬂ—y‘ DeepBeam ‘ WE—" DeepBeam

TTSA TOTA
(b)

Fig. 2: (a) Overview of the DeepBeam framework and (b) The
TOTA domain adaptation challenge in beam prediction.

B. Dataset

The DeepBeam dataset [1]], utilized in our study, captures
experimental data from 24 horizontal beam codebooks, or-
ganized into HDFS5 files. Each file represents a combination
of transmission and reception antenna variations, specifically
using four different SiBeam 60 GHz frontends, numbered
TXO0, TX1, TX2, and TX3. These setups include I/Q samples
across three receiver gain settings, covering SNR levels from
-15 dB to 20 dB. Each transmission antenna and receiver gain
combination comprises 150,000 blocks, with each block con-
taining 2048 I/Q samples. In total, the single file of the dataset
includes 10,800,000 blocks for the 24 beam configurations
across all gain settings, offering a robust volume of data for
in-depth analysis under a variety of signal conditions.

C. Prototypical Networks for Cross-Antenna Beam Prediction

Prototypical Networks operate on the principle that data
points within an embedding space cluster around a central
prototype for each class as shown in Figure [T Utilizing an
encoder for non-linear mapping, the networks cluster features
around a central prototype for each class within an embedding
space. Classification becomes a nearest-neighbour problem,
with the class of a query point determined by its proximity

to these prototypes. ProtoBeam employs this concept of Pro-
totypical Networks for beam classification where prototypes
are created during training using a training set of a particular
antenna. The adaptive learning mechanism of Prototypical
Networks is then expected to deliver stable classification
performance across various antenna setups, including those
not encountered during training. Details are discussed next.

D. Prototypical Network Architecture and Training

In our training strategy for the ProtoBeam PN, we employ a
k-way classification method. Here, 'k’ denotes the number of
classes randomly selected from the available 24 beam classes
for each training episode, which establishes our sampling
framework. We also implement a k-shot approach, where
a specific number of examples from each chosen class are
selected to compose the support set for that episode. The dual
processes of random class selection and support set assembly
are vital components of each training episode. These steps are
depicted in Figure [T] and are detailed in Algorithm [T}

1) Prototype Calculation: We initiate the training episode
by selecting a number of beams (Np) and a corresponding
number of I/Q samples per beam from the dataset, which form
the support set. Beam prototypes are computed by embedding
the I/Q samples into a feature space and averaging these
embeddings, as in Figure [I] step 1, which is also defined by
the equation:
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where I, denotes the set of I/Q samples for the target
beam b, z; € RP is the feature vector of the I/Q sample
with dimension D being (2 x 2048), y; is the corresponding
label for the target beam, with the total number of beams (B)
equal to 24, py is the prototype for the target beam b, and fy
is the encoder function that maps the 1I/Q samples z; to the
embedding space.

2) Encoder: In our implementation, we employed
DenseNet [[11] for the encoder (feature extractor) due to
its effectiveness in promoting feature reuse and mitigating
overfitting. The architecture comprises three dense blocks,
each containing 5 layers, tailored to balance depth with
computational efficiency. The output size of the encoder,
which determines the size of the prototype, is set to 128.
While alternative models could potentially serve this domain,
our exploration is confined to DenseNet’s application within
the current study’s scope.

3) Classification and Loss Computation: During the clas-
sification phase, the network calculates the probability that a
query I/Q sample x belongs to a specific beam b by applying a
softmax function over the Euclidean distances from the query’s
embedding to each beam prototype, shown in Figure [I] step 2.
This probability is given by:

bl = exp(—d(fqb(l‘),pb))
Po(y = blz) S exp(—d(fs(z),pr))
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where d is the chosen distance metric, f, is the encoder
function producing the embedding, p; is the prototype for the
target beam b, and the sum in the denominator extends over
all beam prototypes b'.

The beam with the highest probability ps(y = b|z) is
predicted as the label for the query I/Q sample z. The loss
for each query sample is computed using the negative log-
likelihood of the true beam label, guiding the model update
during backpropagation:

L = —10gpg(y = Yirue|T) 3)

This loss, averaged over all the query I/Q samples, is utilized
in a gradient descent step to refine the model parameters,
aiming to reduce the loss and thus boost the network’s beam
classification accuracy. By iteratively training and reducing
loss, the Prototypical Network hones its ability to produce
precise embeddings that encapsulate the defining features of
each beam, improving generalization and adaptability across
varying beam conditions.

E. Data Augmentations and Prototype Normalization

Our initial applications of Prototypical Networks to adapt to
domain shifts in mmWave beam management revealed subop-
timal results. To address this, we implemented data normaliza-
tion and data augmentation, techniques not previously applied
in DeepBeam, and also applied prototype normalization as
recommended by [5]]. These enhancements were aimed at
improving model robustness and accuracy. The effectiveness
of these methods and their impact on performance are detailed
in the Results and Discussion section.

Data Normalization: We applied min-max normalization to
the I/Q data to standardize input ranges, enhancing the model’s
robustness against variations in input scales, as follows:

i =2 <”C — Emin ) 1 @
Tmax — Tmin

where x; is the original data value, xpi, and T, are the
dataset’s minimum and maximum values, respectively, and
is the normalized value, scaled to the range [—1,1].

Data Augmentation: We implemented random phase ro-
tation and scaling of I/Q data as augmentation techniques
to mimic real-world signal variations, enhancing the model’s
adaptability across diverse conditions.

IV. RESULTS AND DISCUSSION

This section evaluates the performance of our proposed Pro-
toBeam approach for mmWave beam classification. Our anal-
ysis covers several aspects: an examination of the impact of
various enhancement techniques, comparative accuracy assess-
ments across different antenna setups, and detailed evaluations
of model performance through confusion matrices. While we
delve into the effectiveness of individual enhancements, our
primary focus remains on analyzing the model’s classification
accuracy and its ability to generalize across different antenna
configurations.

ProtoBeam Model Training: The Prototypical Network,
leveraging DenseNet for feature extraction, underwent training
using a 5-way, 4-shots approach until the model stopped
improving. Training was executed using an AdamW optimizer,
starting with a learning rate of 0.002. A learning rate schedule,
scaling by a factor of 0.1, was applied as necessary to fine-
tune performance. Training and test datasets were both shuffled
to prevent sequence biases and corrupted samples, ensuring
the integrity of prototype construction and evaluation. The
PyTorch framework was used to develop and train our models.

Hardware and Software Configuration: The methods were
executed on a high-performance computing setup, comprised
of a 12th Gen Intel(R) Core(TM) 19-12900K processor operat-
ing at 3.20 GHz, coupled with 64.0 GB of RAM, and powered
by an NVIDIA GeForce RTX 3080 Ti graphics card.

A. ProtoBeam Accuracy

Figure (3| displays the performance results of our Proto-
typical Network compared to the baseline developed in [/

Algorithm 1 Proposed ProtoBeam Training Algorithm

Inputs: Training set D = {(z1,¥1), ..., (Tn,, Yn, )}, Where x;
is the I/Q sample and y; € {1,..., B} is the target beam.

Dy, denotes the subset of D containing all elements (z;,y;)
for target beam b.

Parameters: n; is the number of baseband I/Q samples.

B is the number of target beams, Np < B is the number of
target beams per episode.

ng is the number of 1/Q support examples per target beam.
ng is the number of I/Q query examples per target beam.
RandSample(S, N) denotes a set of N elements chosen
uniformly at random from set S, without replacement.
Output: Updated model parameters after backpropagation.

procedure TRAINPROTOBEAM (D)

Select indices for target beams in this episode

V <« RandSample({1,...,B}, Np)

for be V do
I, — RandSample(Dy, ng) = Support
Qp — RandSample(Dy\I,,ng) > Query
Dy — % Z(x,-,yi)e 1, fo(xi) = Compute Prototypes

end for

L0

for be V do
for (x;,y;) € Qp do

L <L+ m d(fe(xi),po)+

log<zb/ exp( — d(fd:(mi)vpb’)))]

end for
end for
Compute gradients of L w.r.t. model parameters ¢
Perform backpropagation to update model parameters
p—¢—a-VeL > Update ¢ with learning rate «
return ¢
end procedure

> Initialize loss for this episode
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Fig. 3: Accuracy Improvements of ProtoBeam.

that was not designed to adapt across antennas. We show
separate performance bars for the case of TTSA and TOTA.
In TOTA, training is on TXO0 and testing is conducted on three
different antennas: TX1, TX2, and TX3. The main objective
of ProtoBeam is to generalize and mitigate the performance
loss in the TOTA case. In this scenario, ProtoBeam achieves
a 74.11% accuracy at 16-shots, a large improvement by
398.4% compared to the baseline performance of 18.6%. It
also exceeds the mixed data training accuracy across multiple
antennas by 149.9%, which stands at 49.41%. ProtoBeam also
outperformed the baseline in the TTSA scenario, indicating
the the features extracted through the Prototype Network are
also effective in improving the accuracy in general. These
enhancements demonstrate the ProtoBeam’s robust adaptabil-
ity to domain shifts, as previously highlighted by the chal-
lenges observed in the DeepBeam dataset. In what follows,
we conduct a detailed analysis of various design effects on
performance of ProtoBeam.

B. Impact of Data Augmentation and Normalization

We initiated a series of tests to determine the impact of
normalization, data augmentation, and prototype normalization
on our model’s accuracy. Starting from a baseline accuracy of
38.67% against datasets from different antenna configurations,
each technique was applied sequentially. As detailed in Table
[ these enhancements led to variations in accuracy, achieving
accuracies of 55.26% and 64.2% for TOTA scenario with
2-shots and 32-shots respectively. The analysis focused on
selected frames over a period of 500 samples of the total

TABLE I: ProtoBeam Performance with Data Augmentation
and Normalization.

Experimental Setup TTSA (%) TOTA (%)

2-shot | 32-shot | 2-shot | 32-shot
w/o Data Norm. or Augm. 61.2 73.4 38.67 42.8
Data Normalization only 71.3 83.3 45.8 56.8
Data Norm. & Augm. 79.69 83.68 49.9 60.4
Prototypes Norm. + Data 81.9 84.5 55.26 64.2
Norm & Augm.
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Fig. 4: Accuracy vs. number of k (k-shot), comparing results
from TTSA and TOTA to highlight model adaptability.

data ensuring that our subset was representative of the broader
dataset, maintaining the integrity of our findings while re-
ducing the complexity and duration of the experimental runs.
Data normalization and prototype normalization proved most
effective in improving accuracy, likely due to Prototypical Net-
works’ classification mechanism, which operates similar to a
k-nearest neighbors (KNN) approach, where maintaining scale
and distribution consistency across prototypes is important.

C. Analysis of K-Shots and Comparative Performance

Figure [] illustrates how the number of k in k-shot influ-
ences classification accuracy for our Prototypical Network. It
presents separate performance curves for TTSA on antenna
TXO0, alongside performance when trained on TX0 and tested
on different antennas: TX1, TX2, and TX3 (TOTA). In the
TTSA scenario, accuracies of 87.36% at 8-shot and 88.02%
at 64-shot are achieved. For TOTA scenarios, TX2 and TX3
exhibit accuracies around 79%, and TX1 shows 68.28%,
demonstrating the model’s adaptability across different an-
tenna setups. These results indicate that accuracy improves
with an increase in k in k-shot up to a certain point, after
which it plateaus, suggesting that additional samples beyond
this threshold do not lead to substantial performance gains.

Classification with a Tolerance: To address observed mis-
classifications, we implemented a classification with tolerance
strategy where the classification of the beam to be an adjacent
beam is also treated as correct. This approach serves two main
purposes: firstly, it allows for a margin of error to account
for the model’s inherent difficulty in distinguishing between
neighboring beams, which tend to have similar characteristics.
Secondly, it provides flexibility in considering misclassifica-
tions of neighboring beams as correct, recognizing that such
errors may have minimal practical consequences in certain
applications. The results with this tolerance are depicted
in Figure 5] When applied at 16-shot, this method led to
noticeable accuracy improvements: accuracy increased from
88.14% to 96.91% in the TTSA scenario and from an average
of 74.11% to 88.34% in the TOTA scenario.
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D. Analysis of PCA Projections and Confusion Matrices

We analyzed the PCA projections and confusion matrices
for ProtoBeam to intrepret where misclassification happened.
Figure 6(a) shows TTSA misclassifications mainly between
neighboring beams like classes (5 & 6), (11 & 12), and (17 &
18), where PCA illustrates close clustering. In contrast, Figure
6(b) for TOTA displays similar affected classes but tighter
class prototype overlaps, highlighting the greater impact from
domain shifts in these cases.

V. CONCLUSION

The implementation of Prototypical Networks in mmWave
beam classification has demonstrated substantial improve-
ments, elevating classification accuracy from an average of
18.6% to 74.11% without the necessity for model retraining.
This effectively addresses the complex challenges associated
with domain shifts in wireless communication systems. This
significant improvement demonstrates the potential of Pro-
totypical Networks to enhance mmWave beam classification
tasks with minimal reliance on additional samples from diverse
antenna datasets. Future research will focus on refining our
preprocessing techniques to enhance system efficiency and
robustness by exploring zero-shot learning, particularly zero-
shot Prototypical Networks. This approach aims to eliminate
the need for samples from unseen or different antenna datasets
by utilizing metadata.
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